
Creating global
software: Text handling
and localization in
Taligent’s CommonPoint
application system

by M. E. Davis
J. D. Grimes
D. J. Knoles

Developing software that can be used across
global enterprises is one of the many challenges
of today’s information technology systems.
Taligent’s CommonPointTM application system
eases this problem by providing a foundation for
fully global software’ based on object-oriented
frameworks and the Unicodem character
encoding standard, This paper describes
Taligent’s Unicode implementation and the
CommonPoint text and international frameworks.
It discusses how the CommonPoint system can
be used to build international software and some
of the advantages of object-oriented technology.

M any organizations today are faced with the
challenge of implementing software that op-

erates seamlessly across national borders. The goal
is to create global applications, that is, applications
that have a single binary form that can be used ev-
erywhere. These applications are then localized for
use in a particular geographic region, usually a coun-
try, that shares a language along with other local
characteristics such as a time zone, currency units,
and common number and date formats. Unfortu-
nately, it is not easy to create global applications,
and often a different binaryversion is needed to sup-
port each country or region. In addition to the ex-
pense and inconvenience of creating and maintain-
ing multiple versions of an application, documents

created using a particular localized version of a pro-
gram cannot be displayed correctly by other versions.

Taligent’s CommonPoint* * application system fa-
cilitates the creation of global software. The Com-
monPoint system comprises a set of integrated ob-
ject-oriented frameworks, implemented in C+ +,
that enable the development of modular object-ori-
ented applications and documents. The Common-
Point system runs as a layer on existing operating
systems, including the Advanced Interactive Exec-
utive* (AIX*) and Operating System/2* (0s/2*) en-
vironments. The CommonPoint system allows ap-
plications to be created with these global qualities:

Users can enter and manipulate textual and nu-
merical data in their native language, and can cre-
ate and display multilingual text.
The application can be completely localized with-
out accessing its source code. The interface can
be presented in any user’s native language, and the
same binary version can have multiple localized
presentations.

Wopyright 1996 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 0018-8670/96/55.00 0 1996 IBM DAVIS, GRIMES, AND KNOLES 227

There is high potential for customization by both
the user and the developer, provided by object-
oriented frameworks and modular, data-driven
objects. Users have more control over which re-
sources they use, and developers can take advan-
tage of the functionality already provided by the
frameworks and focus on adding more specialized
features and more localized resources.

This paper describes the support for globally distrib-
utable software provided by the CommonPoint ap-
plication system. The CommonPoint system enables
international software development by providing:

An implementation of the Unicode* * character en-
coding standard that provides a common mech-
anism for storing character data regardless of lan-
guage. The Unicode character set provides a full
set of symbols and other characters, enables the
creation of text in multiple languages and scripts,
and provides data integrity.
Text handling mechanisms that facilitate the stor-
age and manipulation of multilingual-styled text
Character input features that allow users to enter
multilingual text using today's standard input de-
vices
Localization services that allow localizable re-
sources to be easily created, stored, and custom-
ized for use in a specific language or geographic
region
Powerful object-oriented frameworks and data-
driven localizable objects that enable a high de-
gree of customization and extensibility

The paper describes these mechanisms and discusses
the impact of object-oriented technology on the im-
plementation of international software.

Applying the Unicode standard

Use of the Unicode standard as the sole character
encoding mechanism is the foundation for the Com-
monPoint international feature set. Because the Uni-
code standard is so fundamental to the design of the
CommonPoint system's text and international frame-
works, it is worth summarizing the standard and some
of its features here.

Developed by the Unicode Consortium,* the Uni-
code standard is a fixed-width, 16-bit character en-
coding system that contains codes for every charac-
ter needed by the major writing systems currently in
use in the modern world, along with codes for a full
range of punctuation, symbols, and control charac-

228 DAVIS, GRIMES, AND KNOLES

ters. The Unicode standard provides, in all, codes
for over 34 000 characters from the world's alpha-
bets, ideographs, and symbol sets. The standard in-
corporates characters from many existing stan-
dards-for example, the first 256 characters
correspond to the International Organization for
Standardization (ISO) Latin-1 character set (which
attempts to provide character coverage for the ma-
jor Western European languages)-and is compat-
ible with the international standard ISO/IEC (Inter-
national Electrotechnical Commission) 10646. 3,4

Along with a script or character name, the Unicode
standard associates semantic information with each
character that can be used to simplify text process-
ing features. Each character can have an associated
set of descriptive type properties identifying, for ex-
ample:

Punctuation marks (for example, [?I and ['I)
Diacritical marks (for example, ['1 and ["I)
Uppercased, lowercased, and uncased letters (for
example, [A] and [a], respectively-uncased let-
ters appear in languages such as Hebrew and Ar-
abic that do not distinguish between uppercase and
lowercase)
Characters used to represent digits (for example,

Control characters (for example, a carriage return
101 and ~51)

or end-of-text character)

Exclusive use of the Unicode standard for all char-
acter data in the CommonPoint system automatically
eases several of the problems inherent in creating
international applications on many of today's cur-
rent systems by providing a simple and consistent in-
terface, for manipulating character data, that does
not vary based on the language being manipulated.
Many programs on existing systems are currently
based on much more limited character sets-for ex-
ample, the 7-bit ASCII (American National Standard
Code for Information Interchange) character stan-
dard. Several methods have been developed to help
overcome the limitations of these relatively small
character sets. The ISO 8859 standard, for example,
provides a series of 8-bit extended character sets that
use the standard ASCII character set for the first 7
bits and the eighth bit to define another 128 char-
acters, thus extending ASCII to support a variety of
additional languages.

This provides a partial solution for programs that
need to support only a single language, or a set of
languages whose character requirements are very

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

similar. However, implementing the ability to pro- Text handling
duce many combinations of Character sets-requires
an additional enhancement: the use of switching
codes, or escape sequences, that are embedded in

I the text and indicate the character set of the follow-
ing characters. This allows the creation of multilin-
gual text, but text features become much more dif-
ficult to implement because the program must
implement mechanisms that determine the charac-
ter set to which any given character or range of text
belongs.

Providing applications that support Japanese, or
other eastern languages that cannot be supported
by an 8-bit character set, is even more complicated.
In these markets, double-byte and triple-byte char-
acter sets are used to define the large number of char-

Typically these languages are encoded with a com-
bination of single- and double-byte codes, such as
shift-JIS (JIS is the Japanese Industrial Standard).
Programs quickly become much more complex be-
cause processing double-byte character data requires
very different code than processing single-byte char-
acter data.

These are some of the problems the Unicode stan-
dard eliminates. The Unicode standard provides a
built-in solution because it contains codes for vir-
tually all of the characters needed to support all ma-

acter is encapsulated as a 16-bit unsigned integer,
so there is no need to write different code to deal
with both single-byte and double-byte data. Perhaps
more importantly, the integrity of text data is much
higher because character data are always interpreted
using a single encoding standard. This means that:

l acters-often tens of thousands-that are required.

l jor writing systems, in any combination. Every char-

Programming errors are minimized-text-process-
ing code does not need to examine the current font,
maintain escape-sequence state, or use any other
heuristic to determine the semantics, or the byte

I boundaries, of a character. The semantic mean-
ing is inherent in the character code.
Data loss is prevented-internal conversions be-
tween different code pages are not required. This
prevents problems that occur today when charac-
ters cannot be represented in current code pages,
and means that loss of font information or escape-
sequence tags does not destroy the meaning of the
text data.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

1

All text handling in the CommonPoint system is
based on the Unicode standard described above. The
CommonPoint system defines a system data type
called UniChar, analogous to the C language data type
char, which encapsulates individual Unicode char-
acter codes. (Note: w-char is not used because, un-
fortunately, the C+ + standard does not guarantee
that its implementation will be large enough to hold
16 bits.)

All CommonPoint character data are encapsulated
using the UniChar data type. Text data from a non-
Unicode system can be converted to Unicode data
at the point of entry into the CommonPoint system
and then used anywhere. The CommonPoint text sys-
tem provides special objects called transcoders to han-
dle this conversion. Each transcoder supports a spe-
cific non-Unicode character encoding standard, such
as ASCII or JIS, and can handle mapping of character
data both into and out of that standard. Transcod-
ers can be built to support any character encoding.

Higher-level text handling mechanisms provided by
the CommonPoint system are also based on Unicode
character data. The primary text-handling mecha-
nisms are the basic text class TText, used to encap-
sulate Unicode character strings, and the text edit-
ing framework, which allows users to enter and edit
multilingual-styled text.

Creating text objects. n e x t , an abstract class, de-
fines the interface for text objects that are usable any-
where in the CommonPoint system. Instances of
TText subclasses can contain any combination of
Unicode characters from any of the available scripts
or symbol sets. This means that this class can be used
to store and manipulate multilingual text strings with-
out having to add any additional multilingual text-
handling support. n e x t also allows styling informa-
tion to be associated with any or all characters
encapsulated by a text object. The exact implemen-
tation for character and styling information is de-
fined by TText subclasses.

Because TText provides a single set of protocols for
text strings throughout the system, mixed-style text
can appear anywhere text appears, including labels,
buttons, menu text, dialog fields, and spreadsheet
cells. TText bundles character and style information
in the same object, which means that, unlike many
current systems, text can be moved between Com-
monPoint applications and subsystems without los-

DAVIS, GRIMES, AND KNOLES 229

Figure 1 Storage allocation for small strings to entire paragraphs, as delimited by paragraph sep-
arator characters, so that specific character ranges
need not be calculated. TStandardText manages all
the necessary storage for these styles and ensures
that styling information is stored efficiently. For ex-
ample, any contiguous range of adjacent characters
or paragraphs with identical styling information al-
ways shares a single style set. TStandardText objects
allocate space for styling information only when the
style is actually applied to the text. This means that
unstyled text objects are very lightweight, yet the
same class can be used to store fully styled text data.
TStandardText also ensures that no contradictory
styling information is applied to the same text. If a
user applies a red color style to a character string,
for example, any existing color style information is
replaced.

Figure 3 shows the class relationships for text and
style classes. The “A7’ symbol indicates an abstract
class or method or an inheritance relationship (for
example, TStandardText is a subclass of the abstract
class n e x t) . The “n” indicates a one-to-many re-
lationship (for example, a TStyleSet object can con-
tain more than one TStyle object).

ing any of the styling information. The system in-
cludes a concrete subclass, TStandardText, that
provides the primary mechanism for representing
styled text.

Storing character data. TStandardText can be used
for strings of almost any size, from only a few char-
acters up to 2 billion characters. TStandardText ob-
jects dynamically change their storage allocation
strategy to provide efficient storage at different sizes.
At small sizes, each instance uses a single contigu-
ous block of memory. For efficiency, the block is re-
sized only when necessary. Figure 1 shows the use
of memory with successive character insertions. The
strategy automatically changes to use discontiguous
storage for longer strings, as shown in Figure 2. This
implementation provides for much better perfor-
mance when inserting and deleting characters, avoid-
ing rescoping or reallocating data unnecessarily.

Storing style data. TStandardText also implements a
storage mechanism for styling information. Individ-
ual styles or groups of styles (called style sets) are
created, and then applied to specific characters or
ranges of characters in the text object. Styles that
apply to paragraphs rather than individual charac-
ters, such as indentation or justification, are applied

Note that styles in the CommonPoint system derive
from the general protocol for data attributes. In
CommonPoint, text styles never affect the underly-
ing meaning of the character data (unlike in the
Macintosh system, where multiple character sets are
supported by a single character encoding by apply-
ing different fonts for each character set). Text styles
simply associate additional characteristics with the
text, typically describing how it should be displayed.
While encapsulated in a single text object, style data
are actually parallel to character data and can be ig-
nored by text operations such as searching for and
sorting character strings.

Subclasses of the abstract class TStyle support a wide
variety of text styles, including common styles such
as font, point size, weight (for example, bold or light),
posture (for example, italic or backslant), typo-
graphic style, letter-spacing, line-spacing, justifica-
tion and paragraph indentation, superscripts and
subscripts, color, underlining, and so on. The styl-
ing mechanism can also be used to apply arbitrary
graphic transformations to text strings, such as skew-
ing, stretching, and rotating, as shown in Figure 4.

In addition to the kinds of styles used to determine
how to render (or display) text, the styling mecha-
nism supports nonrendering styles that can be used

230 DAVIS, GRIMES, AND KNOLES IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

Figure 2 Storage allocation for longer strings

Figure 3 Class relationships for text and style classes
~~~ 

to encapsulate other information about characters ing a multilingual  text document for text of a 
or paragraphs. For example, the style TLanguage- particular language-text of other languages could 
Style identifies the natural language of a character be eliminated from the search range. This informa- 
string, providing information in addition to the char- tion also enables the system to effectively  select an 
acter information inherent in the Unicode represen- appropriate font for displaying character strings if 
tation. This might  be useful, for example, in search- a font is not explicitly  specified. Because any  class 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 DAVIS, GRIMES, AND KNOLES 231 



Figure 4 Text  string transformations 

“Text allows you to skevv; stretch, and ~ o p p  text, in addition to 

applying traditional styles  such  as  underlines, ;f,~!:.~i.:-, and Sizes. 

descending from TStyle  can be applied to a range 
of characters in a n e x t  object, TStyle  subclasses  can 
be designed to add arbitrary information to any  piece 
of text. 

An important aspect of the CommonPoint text  and 
international features is the separation of language- 
sensitive facilities from basic string storage and ma- 
nipulation. For example, a TTextComparator object, 
an object that encompasses the rules necessary for 
language-sensitive string comparison, is a  separate 
object. Different comparators can be used  with  dif- 
ferent strings at will-no global state is  involved. Ad- 
ditionally, as a  separate object it can be: 

Sent to a server for remote sorting and searching 

Modified (that is, rules can be added or  deleted) 
operations 

and then applied to text 

User editing features. Support for display and ed- 
iting of styled  text  is provided by the text editing 
framework. Like other CommonPoint frameworks, 
the text editing framework  is  extensible and provides 
a foundation for continued evolution of text editing 
f~nctionality.~ The text editing framework is in- 
tended to provide a complete text editing facility that 
can be used by applications in  which the primary fo- 
cus  is not text editing, for example, for e-mail or for 
text  fields  in a charting program. Word processing 

232 DAVIS, GRIMES, AND KNOLES 

and desktop publishing  programs  should not subclass 
this framework, but build directly on the underlying 
system support.  The text editing framework is inte- 
grated with the rest of the system, and is based on 
other application frameworks that provide features 
such  as automatic “undo” and “redo” of user  actions, 
collaboration, and the ability to embed other  data 
types (for example,  movies or graphics) within text.6 

The editable text data type is based on TStandard- 
Text and provides the additional features needed to 
display and edit the character and style data.  The 
text editing framework  provides a fully functional in- 
terface for entering text, including preassembled 
menus that allow users to apply  any of the character 
or paragraph styles described above to any selected 
range of characters or paragraphs. The framework 
also includes a set of cursor tools that provide an 
alternative mechanism for applying  styles-the user 
activates the tool and uses the mouse or cursor to 
apply  styles through direct manipulation. 

The text editing framework supports entry and dis- 
play  of text  in arbitrary combinations of languages 
and scripts. Input of multilingual text  using the key- 
board is enabled by a set of typing configurations, 
described in more detail in the next section. The 
framework  provides  menus that allow  users to switch 
between  any  available  typing  configurations-includ- 
ing  English, French, Greek, and  Japanese-to en- 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 



Figure 5 Multilingual text in a document 

i 

You can  enter multilingual text in  CommonPoint documents. For 

example,  you  can  enter  some  Japanese text 8 and  then  return to 

English  or  enter  another  language. 

ter multilingual text into a single document.  The 
framework provides intuitive  behavior  for switching 
between configurations. For example, the framework 
automatically  changes the  font, if necessary, when 
the user  activates  a new typing configuration.  When 
the user switches from an English keyboard config- 
uration  to a  Russian  keyboard  configuration,  for ex- 
ample,  the framework  automatically  begins apply- 
ing a Cyrillic font  to  the  input text. The framework 
also reactivates the correct typing configuration when 
a  user  places  the  cursor  arbitrarily  into  a text doc- 
ument.  For example, if a  user  placed  the  cursor 
within the Kanji ideographs in the  document shown 
in Figure 5 ,  the  Japanese typing configuration would 
automatically  be  activated. 

The text editing  framework  also  implements  a  font 
substitution  mechanism to ensure  that multilingual 
text data  are always displayed meaningfully. This 
mechanism is automatically  activated  when the user 
enters a  character  that is not displayable by the cur- 
rent  font.  Instead of displaying a “box” or  other 
meaningless glyph, the mechanism searches  the avail- 
able  fonts  for  the correct glyph to display that  char- 
acter, using heuristics that  take context into  account. 
If it  cannot find an  appropriate glyph, it displays a 
glyph from  a special font  provided by the  Common- 
Point system that identifies the script or general  cat- 
egory of that  character.  These glyphs are enclosed 
by a  rounded  rectangle so that you can identify im- 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 

mediately that an  additional  font  must  be  installed 
to display the  data.  For example, Table 1 shows the 
glyphs used to  represent missing glyphs from sev- 
eral  scripts  and  categories.  This  mechanism  ensures 
meaningful display of multilingual text and facilitates 
the exchange of text documents  internationally. 

Entering  multilingual text 

Multilingual character  input in the  CommonPoint 
system is enabled by typing configurations,  each of 
which supports typing  in a specific script or language. 
Users generally select  a typing configuration  as the 
default  for  their system. However,  they  can  activate 
different configurations  arbitrarily to  enter multilin- 
gual text, as  described in the previous  section. 

A typing configuration consists of several  compo- 
nents: 

A virtual  keyboard  mapping 
One  or  more text modifiers (tools that  map  char- 
acters  from  one  sequence  into  another based on 
context) 
Optionally, an  input  method for  entering  ideo- 
graphic  characters  such  as  Kanji 

As the  user types, the  CommonPoint  input system 
converts  keystrokes to key codes  and passes them  to 
the active typing configuration. The typing config- 

DAVIS, GRIMES, AND KNOLES 233 



Table 1 Glyphs inserted to indicate  missing  fonts 

uration creates the correct character string and in- 
serts it into the document, as  shown  in  Figure 6. Each 
of these elements takes advantage of the Unicode 
foundation and of the  data reuse inherent in object- 
oriented technology to provide  efficient, robust typ- 
ing functionality. 

Virtual keyboards. The virtual keyboard is the only 
required element in the typing configuration. The 
virtual keyboard provides a mapping between the 
codes  issued by the physical  keyboard and virtual  key 
codes associated with  specific characters. Generally 
a virtual keyboard mapping corresponds to a spe- 
cific language, so there can be multiple keyboard 
mappings that support a particular script. For exam- 
ple, on an English keyboard, key 2 (the “Q” key on 
a QWERTY keyboard) maps to the character “q,” 
while on a French keyboard  it maps to the character 
“a.” A virtual keyboard can produce any  text object 
from a keystroke, including multiple characters and 
styled text. For example, a keyboard could be con- 
figured to  enter  the user’s name or another common 
string with a single keystroke. 

Text modifiers. After the virtual keyboard deter- 
mines the correct character codes,  they are processed 
by any  text  modifiers  in the configuration. The typ- 
ing configuration allows  text  modifiers to be chained 
together, so that  the modified  text produced by one 
text  modifier  is the input text to  the next  text mod- 
ifier.  Currently the CommonPoint  system  has  defined 

234 DAVIS, GRIMES, AND KNOLES 

two kinds of text  modifiers:  lexical tools and trans- 
literators. Lexical tools operate  on words,  such as 
spelling or grammar checkers. Lexical tools can be 
added directly to the typing configuration so that 
these operations occur as the user types. 

The CommonPoint system does not currently pro- 
vide  any  lexical tools directly. It does, however, in- 
clude a number of transliterators. Transliterators 
perform transformations on text input based on  a 
specific algorithm or set of rules. Transliterators can, 
for example, perform the following  as the user types: 

Provide  accent  composition,  such  as  combining the 
key sequence [a][”]  or  [“][a] into  the single char- 
acter [a]. Transliterators allow  this to occur with- 
out needing “dead keys,” that is,  key combinations 
such as alt-U  that do not create  a display until the 
character to be accented (the “a” in this case) is 

Change the case of selected letters, such  as cap- 
italizing the first letter of each word or sentence 
Create “smart quotes,” that is, replace straight quo- 
tation marks with left and right quotation marks 
as appropriate 
Provide phonetic transcription between  scripts, for 
example,  between  Latin and Greek or between Ro- 
maji and Kana 

typed. 

Most of the transliterators provided by the Common- 
Point system are rule-based, meaning that they  use 
a table of rules to determine how to modify the text. 
Each rule has up to four fields  defining the input text, 
the  output text, and, optionally, preceding and suc- 
ceeding contexts that allow the rules to be context 
sensitive. Each rule field can contain up to 256 char- 
acters, allowing the creation of very  specific rules. 

Table 2 lists  example  fields for the very  simple trans- 
literation operation of changing straight quotation 
marks to left and right quotation marks. The rules 
are traversed in order, and once a rule is applied the 
transliteration is complete. “NIL” could be specified 
for the preceding context in the second rule in Ta- 
ble 2, because if the criteria for the first rule is not 
met the second rule must be applied. 

Range variables can be specified that provide a lim- 
ited amount of wildcard matching for rule input and 
context fields. For example, a variable might be de- 
fined to represent all uppercase letters  (the range 
A-Z) or all  vowels (the set aeiouAEIOU). Inverse 
rules can be created  that  are applied if a character 
in the variable range or set does not appear in the 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 



Figure 6 Converting  user  keystrokes  into character strings 

~ ~ _ _ _ _ _  ~~~~~ 

Table 2 Sample  rules  for  transliteration 
~ ~~~ 

Change straight  quotation II /I Letters, NIL 
mark to right  quotation punctuation 
mark when  ending a 
quotation 

.** 

Change straight quotation II VI NIL m 
mark to left quotation 
mark when beginning a 
quotation 

I *  

I ,  
, I  

, I  I 

input field. For example,  all nonletter characters 
could be identified by creating an inverse rule based 
on the ranges a-z and A-Z. 

Once a transliterator is  built,  it  can  be  used  anywhere 
in the system to perform text  processing-even pro- 
grammatically outside the typing configuration. For 
example, commands that change letters from low- 
ercase to uppercase or  that change the alphabet of 
selected text could use transliterators. 

Input methods. Finally, the typing configuration can 
include an input method to allow phonetic entry of 
ideographic characters (used primarily by Chinese, 
Japanese, and Korean). Input methods often take 
the results of transliterators and provide more so- 
phisticated processing. For example, a Japanese typ- 
ing configuration can  use transliterators to convert 
from a Roman transcription of Japanese text into 
Kana, and then use an input method to convert from 
Kana to Kanji. Input methods define both the tech- 

IBM SYSTEMS JOURNAL,  VOL 35, NO 2, 1996 DAVIS, GRIMES, AND KNOLES 235 



nique for parsing the input and the user interaction 
model, for example, how alternate options for hom- 
onyms are chosen. 

The CommonPoint input method framework allows 
input methods to be modular. The interface for an 
input method is the same no matter what  type of doc- 
ument is  being created or changed. The system cur- 
rently includes an input method for Japanese;  oth- 
ers can  be added. The system  also  provides a porting 
interface to make it easier to port existing non-Uni- 
code input methods. 

Localization 

The CommonPoint system  includes  specific  services 
that support localization. The services support  the 
creation of customized resources for a particular lan- 
guage, country, or region. Many of these resources 
are modular and can  be added  to  the system at any 
time for use by any application. They include: 

Language-specific  text  analysis features such  as  col- 
lation, searching, and boundary analysis 
Language- or region-specific text-to-binary scan- 
ning and formatting for data types  such  as dates, 
times, and numbers 
Conditional formatting 

Additionally, mechanisms are provided for collect- 
ing and accessing the resources for a particular 
region, including the ability to define fine-grained 
localizations and to archive program interfaces lo- 
calized for a number of different presentation lan- 
guages. 

Collating and searching. Common sorting opera- 
tions on strings rely on an ordering of the charac- 
ters, called a collation order (often thought of as an 
alphabetic order). For example, if an alphabetic se- 
quence specifies that [a] is  less than [b], in an alpha- 
betized list strings beginning  with  [a]  would come 
before strings beginning  with  [b]. Collation orders 
are used to enable more natural sorting and search- 
ing than  a simple ordering based on character codes 
can support. For instance, in the ISO Latin-1 char- 
acter set, the code for [Z] is  less than the code for 
[a] and the code for [z]  is  less than  the code for [ii], 
which leads to incorrect sorting results. Collation or- 
ders differ  between  languages, sometimes even  when 
those languages use the same script-for  example, 
French sorts differently than Swedish.  Some lan- 
guages  also do not have a single “standard” colla- 

236 DAVIS, GRIMES, AND KNOLES 

tion order  that can be used for every sorting oper- 
ation. 

Because of the requirements of natural language,  col- 
lation orders must implement a number of features 
to provide intuitive sorting. The CommonPoint sys- 
tem defines a table-based approach for creating col- 
lation orders (instances of the class TTextCompara- 
tor), based on the Unicode standard, that allows  full 
functionality for language-sensitive sorting. To sup- 
port this functionality, CommonPoint collation or- 
ders support: 

Ordering priorities for up to three levels of col- 

Normal or reverse “French”  orientation 
Multiple character mappings for grouped or ex- 

Two  levels of ignorable characters 
Ordering for unmapped characters 

Ordering priorities enable collation features in  which 
characters that  are often considered equivalent for 
sorting purposes (for example, the uppercase and 
lowercase  versions of a character) are sorted together 
as users expect. Simply reordering characters, such 
as ordering an uppercase [PI between the lowercase 
[p] and [q], is not sophisticated enough to produce 
the preferred results; with  this scheme, for example, 
“put” would sort before “Pet” because the lowercase 
[p] is  less than  the uppercase [PI. 

Ordering priorities define the priority of the differ- 
ence between any  two adjacent characters in the 
ranking; differences between two characters can be 
primary, secondary, or tertiary. In the English  col- 
lation order, for example, the difference between [a] 
and [b]  is primary, the difference between [a] and 
[a]  is secondary, and the difference between [a] and 
[A]  is tertiary. Other  European languages may have 
other  features  that correspond to secondary or ter- 
tiary  differences. 

When comparing, secondary differences are consid- 
ered only  when there  are no primary  differences. So, 
for example, the secondary difference between [e] 
and [C] is  used to sort the following  strings: 

resume 
rCsumC 
resumes 

Likewise, tertiary differences are only considered 
when there  are no primary or secondary differences. 

lation 

panding characters 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 



The tertiary difference between [r] and [R] is  used 
to sort the following strings: 

resume 
Resume 
rCsumC 

Note that ordering priorities can be used to control 
the sensitivity of searches. For example, case-insen- 
sitive searches in  English  text  can ignore tertiary dif- 
ferences: - resume and Resume would  be considered 
equal. 

The ability to specify orientation enables correct sort- 
ing of French, which attaches more weight to accent 
differences that occur later in the strings being com- 
pared  rather than earlier in the strings. For exam- 
ple, the string “pcche” sorts before “pkchC,” but the 
string “pCcher” sorts before “pEcher.” Whether to 
use the reverse French orientation for sorting only 
secondary differences or both secondary and tertiary 
differences  can be specified. 

Multiple character mappings  allow correct compar- 
isons  when a single character expands to multiple 
characters (for example, the [0] in German is some- 
times mapped to [o][e]) or when multiple charac- 
ters  are grouped as a single character (for example, 
the [ch] character grouping in Spanish). This allows 
“Tonen” to be sorted before “Ton” in German,  or 
“czar” before “chico” in Spanish. 

Ignorable characters allow the identification of char- 
acters, such as punctuation marks or accents, that 
should  be  ignored in certain contexts. These are char- 
acters that generally represent  a secondary or  ter- 
tiary  difference  but can be ignored if there  are no 
other differences in the string. For example, by iden- 
tifying the hyphen as an ignorable character, the 
strings “blackbird” and “black-bird” would be con- 
sidered equivalent. 

Finally, the CommonPoint collation orders allow 
control of the ordering of characters that do not need 
to be mapped by the ordering object.  Generally these 
are characters for which ordering is not  relevant,  such 
as dingbats or other symbols. For efficiency  they  can 
be ordered using the values of their Unicode char- 
acter codes, or sorted before, within, or after the gen- 
eral ordering defined by the collation object. 

Collation orders also  provide a high  level of param- 
etrization, allowing programmers to exercise control 
over the collation process and to retrieve informa- 

- 

IBM SYSTEMS  JOURNAL,  VOL 35, NO 2, 1996 

tion about the results. For example, the program- 
mer may need to know  exactly the point at which 
differences  occur  between two strings so that  common 
initial substrings can be identified; the collation ob- 
ject’s comparison functions return this information. 
The CommonPoint collation orders implement the 
algorithm  defined by Unicode Version 1.1 that iden- 
tifies  when  two sequences are considered equiva- 
lent-for  example, the composed sequence [a][” ] is 
equivalent to the precomposed character [a]-allow- 
ing them to be collated identically. 

These collation orders also form the basis for the 
CommonPoint text-searching mechanism. The sys- 
tem includes classes for objects that  iterate through 
text, looking for a particular string, using collation 
orders to provide language-sensitive searching. The 
features described can be used to influence the 
search results-for  example,  in  English a case-insen- 
sitive search can be done by telling the collation or- 
dering object to ignore tertiary differences. The sys- 
tem implements an algorithm for sublinear  searching 
that enables searching to be done very  quickly,  yet 
handles international comparisons. 7”1 

Collation ordering objects  provide an efficient  mech- 
anism for building international sorting and search- 
ing features. Because collation orders  are  inter- 
changeable, features can be created  that  are not 
dependent on a particular language. The program 
interfaces with the collation object, and  different  col- 
lation objects can be substituted to provide correct 
results for text in different languages. These oper- 
ations also  benefit  tremendously  from the use of Uni- 
code-cross-language searches are more easily en- 
abled because of the uniform character encoding. 
Because they are table-based, collation objects can 
be built easily by supplying the  appropriate  data;  or- 
derings that require more sophisticated processing, 
such  as those requiring  dictionary lookup, can be cre- 
ated by subclassing the abstract class TTextOrder. 
Collation objects can also be merged. For example, 
French and Arabic  objects  could be combined to cre- 
ate a collation order for use  in North Africa. One 
of the original orderings would  be  specified  as the 
“master” so that its rules take precedence if any con- 
flicts arise. The rules from the “slave” are added 
wherever they do not conflict  with the master. 

Performing boundary analysis. Boundary analysis 
is done to programmatically break up a Unicode text 
string into logical  text elements such as characters, 
words, lines, or sentences. This allows  users to nav- 
igate through a display of characters one at a time 

DAVIS, GRIMES, P \ND KNOLES 237 



using cursor keys, or  to select a word, line, or sen- 
tence with a double or triple mouse-click. It also de- 
termines the necessary information to allow  text to 
be dynamically formatted into lines. 

This analysis  is not trivial,  especially  given that  the 
desired results may  vary between regions. Often  the 
text alone does not provide enough information to 
determine boundaries-for  example, the ambiguous 
use of the period character as both an end-of-sen- 
tence indicator and within abbreviations can make 
it  difficult to determine sentence boundaries cor- 
rectly.  However, heuristics can be applied that pro- 
duce reasonable results in  most  cases,  especially for 
user selections that do not need to be exact. The  re- 
quirements can also change based on  the  operation 
being performed. For example, trailing spaces can 
be included  in  word  elements,  but for operations such 
as search-and-replace, the inclusion of trailing  spaces 
as part of the word  can cause the search to fail. 

Rather than develop algorithms to search for the ac- 
tual text elements (words, sentences, and so on),  the 
CommonPoint system implements a mechanism that 
looks for the boundaries between those elements. 
This simplifies the necessary computation, allowing 
the elements to be  identified more quickly. The Com- 
monPoint system  also  gives the ability to override 
this mechanism for instances in  which more sophis- 
ticated processing, such as dictionary lookup, is  also 
required. 

Boundary analysis for particular kinds of text ele- 
ments is performed by iterators, each of which  is 
based on a specification of where boundaries can  oc- 
cur for an element. The boundary specification de- 
fines different collections of characters and lists the 
rules for boundaries in terms of those character col- 
lections. The character collections can be specified 
either as a list of characters (literal characters or 
ranges of characters) or as a Unicode character prop- 
erty, as defined in the CommonPoint Unicode im- 
plementation (for example, letters  or closing punc- 
tuation marks). 

For example, a specification for determining sen- 
tence boundaries might define the following char- 
acter collections: 

Paragraph and line separator characters 
Space separator character 
Nonspacing marks 
Closing punctuation 
Terminating characters ("!" and "?") 

238 DAVIS,  GRIMES, AND KNOLES 

Period character 
Capital letters (uppercase letters, title case letters, 

Lowercase letters 

The following rules could then be defined to deter- 
mine sentence boundaries: 

1. Always break after paragraph separators. 
2. Break after sentence terminators, but include 

inside the sentence boundary any nonspacing 
marks, closing punctuation, and trailing spaces. 

3. Handle periods separately because they may be 
within an abbreviation or number rather than a 
terminating character. Do not break the sentence 
after the period if it  is  followed by a lowercase 
letter instead of an uppercase letter. 

and noncased letters) 

An implementation of this specification  is created 
by mapping characters to  a type identifier (TypeID) 
and using the TypeIDs to  determine  the boundaries 
with a  state table that expresses each rule as a  state 
transition. This is encapsulated by an iterator object 
that can be used to iterate either forward or back- 
ward through a block of text, searching for bound- 
aries of a particular type of text element. The sys- 
tem also  includes a mechanism that ensures accuracy 
when the iteration is begun at a random point within 
the text. For example, if the cursor is  placed  in the 
middle of a sentence when iteration for sentence 
boundaries begins, the  iterator will locate the  start- 
ing boundary of the sentence before moving  forward. 

Scanning  and  formatting  numbers  and times. Text 
formatting is the process of converting binary data 
(such as a number) into  a meaningful textual rep- 
resentation; scanning is the reverse operation.  The 
CommonPoint system provides objects called for- 
matters that perform both formatting and scanning 
for the system data types representing numbers and 
times. The  formatter classes  can  also be subclassed 
to provide scanning and formatting capabilities for 
other  data types. 

Generally,  localized  instances of these formatters are 
created to provide the correct behavior for specific 
regions. For example, formatters could be created 
that produce a string representing the same binary 
number in either an American (9,999.99) or  a French 
(9.999,99) format, or represent the number using a 
different  numbering  system (for example, Roman nu- 
merals).  Because these formatters manipulate n e x t  
data, styling information can be used to express or 
interpret meaning. For example,  negative numbers 

IBM SYSTEMS JOURNAL,  VOL 35, NO 2, 1996 



can be represented in red,  or scientific notation in 
the format 1.23 X lo3, where the superscripted num- 
ber is  always the exponent. Nondigit characters can 
be attached to  the  output, so, for example, number 
formatters could provide currency formats such  as 
“$300.00” or “f19,999.” 

The CommonPoint system provides a set of num- 
ber formatters for a variety of formats. These include 
floating-point numbers, scientific notation, Roman 
numerals, fractions, and  Han numbering. These for- 
matters give a great deal of control over the details 
of number formatting, for example, separator char- 
acters, rounding precision, zero-padding, and so on. 

The system  also includes formatters for converting 
the system’s internal time representation into the cor- 
rect local time in the desired format. The internal 
representation is a flow  of time according to  the in- 
ternational standard called Coordinated Universal 
Time (uTC) which  is equivalent to Greenwich Mean 
Time. These formatters use  several resources to pro- 
duce a meaningful textual representation: a time 
zone defining the differential from GMT, a calendar 
object  defining the calendaring system (for example, 
Gregorian or Arabic), and a  pattern defining the 
fields of interest and their format. The same binary 
UTC data could be formatted into any of the follow- 
ing:  “2:15 pm,” “1415 hours,” “Monday, May 1,” 
“1-5-95,” or  other  created patterns. 

Allowing  conditional  formatting. CommonPoint for- 
matters allow for conditional formatting and subfor- 
matting of text representations based on  the value 
of certain fields. This allows, for example, the cre- 
ation of messages that are grammatically correct. For 
example, a conditional formatter could generate  the 
messages: 

“You have not deleted any files.” 
“You have deleted 1 file.” 
“You have deleted 3 files.” 

instead of the generic message: 

“You have deleted 1 file@).” 

To  generate these messages, a special formatter 
called a  parameter  formatter is created that checks 
an input parameter (in this case, the  parameter  rep- 
resenting the number of files) and chooses the right 
text based on its value. This is particularly useful  in 
more complex  scenarios; for example,  in  some  Slavic 
languages the plural form of a noun changes based 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 

on whether there  are two items, three  to five items, 
or more than five items. These formatters can also 
be  used to format and scan the  date and time pat- 
terns described above. Aparameter  formatter maps 
the numeric value of a field, for example, “1” in the 
“month” field, to a language-specific textual repre- 
sentation such as “January” or “Janvier.” 

Parameter  formatters also enable flexible scanning 
by  allowing the specification of alternate text  matches 
for specific  fields or ranges in the scan  text. For ex- 
ample, when  scanning formatted dates, the  dates 
“1-1-99”  and  “1/1/99”  should  scan  identically. Param- 
eter  formatters allow the character [/] to be spec- 
ified as an  alternate match for the [-] character. 

Enabling the localization process. To facilitate the 
process for localizing software, the CommonPoint 
system  includes the locale  mechanism.  Conceptually, 
a locale represents a geographic  region for which ob- 
jects need to be  localized-locale objects then col- 
lect all the objects for a particular locale. Locales 
are organized into  a hierarchy that descends from 
a single root locale. The first  level beneath the  root 
generally represents languages, and levels beneath 
that represent increasingly fine-grained locales. 

Figure 7 shows part of the CommonPoint locale  hi- 
erarchy. This hierarchy allows regions to share com- 
mon resources from a high-level locale rather  than 
duplicating it. For example, the United States and 
the United Kingdom  can share language-specific re- 
sources, while  lower-level  locales provide resources 
that  are country-specific,  such  as date, number, and 
currency formats. 

Locales are associated with open-ended collections 
of heterogenous locale objects. Objects commonly 
referenced by locales include a country identifier, a 
language identifier, a default typing configuration, 
font preferences, and a number of typical date and 
number formatters. New kinds of objects can be 
added  to any locale at any time. 

The locale  hierarchy  also  helps organize multiple lo- 
calized interfaces for applications. Each program  has 
an associated archive that contains all the localiz- 
able interface elements, such  as  menu  labels, sounds, 
and  icons. The information in these archives  is or- 
ganized according to the locale hierarchy shown 
above,  allowing  it to contain multiple versions that 
correspond to different languages or regions. Apro- 
gram’s  archive  could contain localized interfaces in 
French, Russian, English, and Japanese. The user 

DAVIS, GRIMES, AND KNOLES 239 



Figure 7 Part of the CommonPoint  locale  hierarchy 

UNITED  KINGDOM 

can then choose a preferred language, and the sys- 
tem presents the program interface in that language 
if it  exists  in the archive. If the program has not been 
localized to that language, the default presentation 
for the program is  used-generally the language in 
which the program was originally created. 

Taligent provides an interface development tool, the 
cpConstructor* * User Interface Development Tool, 
that makes  it  easy to create an archive for a program’s 
interface and to localize that interface for use  in  any 
number of locales. 

Taking  advantage of object-oriented 
technology 

Object-oriented design  philosophy provides several 
implementation advantages for the international 
software features described in  this paper. The Com- 

monPoint application system,  including the text and 
international frameworks  described here, derive  sev- 
eral advantages from being object-oriented that  are 
important to the development of international soft- 
ware: they are modular, data-driven, and tailorable. 

The modular nature of an object-oriented system  al- 
lows individual  pieces of functionality to be added 
arbitrarily. This means that new  localized resources 
can  be added to the system at any time. They are 
immediately usable, and do not interfere with  any 
already-installed objects in that locale. Multilingual 
or international users can choose between virtual 
keyboards or collation orders for  different  languages, 
number and date formatters for various standard for- 
mats, and so on. From the developer’s standpoint, 
many  of these resources are already available and 
can  be  used  as-is  in  new programs, making the  de- 
velopment of international software much more ef- 

240 DAVIS, GRIMES, AND KNOLES IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 



Figure 8 Class  inheritance  hierarchy  for  CommonPoint  number formatters 

TAdditiveNumberFormatter 

I'rFormatter il 
.l."..". .h. . .. . . - . . . . .. .. 

TRationalNumberFormatter TPositionalNumberFormatter 

ficient. Because  these objects are  independent of the 
locale, they  can  be accessed, or copied  and  altered. 
They  can  also  be  shipped to a  server which may not 
even have the original  locale. 

Development is also more straightforward  because 
all objects of a  particular  type  behave the same way, 
regardless of what  region or language  they are lo- 
calized for.  Standard  protocols  are  defined  for  each 
type of object, but  the behavior of a  particular in- 
stance is determined by the  encapsulated  data.  For 
example,  a  collation  ordering  object  can be relied 
on to provide  protocol  for  comparing two strings- 
the result of the comparison, however, is determined 
by the language-specific data  that define that colla- 
tion  order. New collation  objects  for other locales 
can  be  built easily, just by providing the correct  ta- 
ble of collation rules, or  an existing object  can be 
customized by editing the collation  rules.  This cus- 
tomization is easily provided with any of the  inter- 
national  objects that  are table-based, including col- 
lation  orders, text boundary specifications, and 
virtual  keyboards. Other types of objects are  param- 
etrized  to allow them  to work with different data. 
For example, number  formatters  can  be  instantiated 
to work with the different sets of digits supported by 
the  Unicode  standard, such as  Arabic  or Bengali 
digits. 

The  inheritance mechanism  provided by the  object- 
oriented  implementation  can  be  used  to  create  ob- 
jects that  are  more finely tailored to specific needs. 
Subclassing allows preexisting data  and functional- 
ity to  be  reused, so that programming efforts can  be 
concentrated on providing more specialized or so- 
phisticated features. The CommonPoint  number  for- 
matters  provide an example of how inheritance  can 
be used to create increasingly specialized objects,  as 
shown in Figure 8. 

Higher-level classes provide  more  generic  functions 
for converting between binary numbers  and text rep- 
resentations. Classes further down in the hierarchy 
inherit that functionality and provide additional func- 
tionality that is more specific to  particular  formats. 
For example, the rational-number formatter provides 
functions  for specifying whether  to superscript  and 
subscript the  numerator  and  denominator  portions 
of the fraction, while the floating-point-number  for- 
matter provides  functions  for  setting  formatting op- 
tions  for  exponential  notation. 

The  inheritance mechanism also makes  customiza- 
tion  easier  when  large  amounts of data  are involved. 
For example, the JIS character  encoding  set  includes 
thousands of characters.  Variations of JIS use slightly 
different encodings but  are all algorithmically derived 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 DAVIS, GRIMES, AND KNOLES 241 



from the same basic standard. Instead of creating a 
different transcoder to encapsulate all the necessary 
data for each variation, a more efficient implemen- 
tation could be created using inheritance. The 
transcoder for each variation could be subclassed 
from a base JIS transcoder class, and, instead of du- 
plicating the  data, functions can be overridden or 
added to create  the variation algorithmically. The 
implementation is not only simpler but  the derived 
classes  can be used  polymorphically. 

Conclusions 

Taligent’s CommonPoint application system pro- 
vides an example of  how object-oriented principles 
can be applied to provide improved functionality in 
areas  that  are crucial to the development of global 
software-text handling, character input, and local- 
ization. The text  system provides a model for mul- 
tilingual  text manipulation, as  well  as a simple  mech- 
anism for creating and collecting the resources that 
are  appropriate for any  given locale. The Common- 
Point system’s object-oriented implementation 
makes  it  easy to use, extend, and customize, giving 
developers a high degree of flexibility.  Exclusive us- 
age of the Unicode character encoding standard is 
also integral to  the CommonPoint strategy for in- 
ternational software development, providing a much 
greater degree of integrity for character data. 

The CommonPoint text and international frame- 
works described in  this article comprise hundreds 
of classes and thousands of functions. This rich  in- 
ternational  feature set, combined with pure object- 
oriented implementation, make the CommonPoint 
application system a powerful foundation for devel- 
oping global software applications that can be local- 
ized for fine-grained regions, yet remain integrated 
and compatible across modern international orga- 
nizations. 

*Trademark or registered trademark of International Business 
Machines Corporation. 

**Trademark or registered trademark of Taligent, Inc. and  Uni- 
code, Inc. 

Cited references and  notes 

1. This paper has been substantially revised and expanded from 
an  earlier version published in Objects in Europe, a Supple- 
ment  to  SIGS Publications 2, No. 2 (July-August 1995). 

2. The Unicode  Consortium,  a nonprofit organization, was 
founded in 1991. Members of the consortium include major 
computer  corporations, software producers,  database 
vendors, research institutions, international agencies, 

and various use groups. For  more information on  the  Uni- 
code Consortium, see the  Unicode  home  page at http: 
iiwww.stonehand.comiunicode.htm1. 

3. The Unicode Consortium, The Unicode Standard: Worldwide 
Character Encoding, Version 1.0 (2 volumes), Addison-Wes- 
ley Publishing Co., Reading,  MA (1991). 

4. The Unicode Standard, Version 1.1., Unicode Technical Re- 
port #4 (prepublication edition), The Unicode Consortium, 
Mountain View, CA (1993). 

5. Taligent, Inc., The Power of Frameworks, Addison-Wesley 
Publishing Co., Reading, MA (1995). 

6. S. Cotter and M. Potel, Inside Taligent Technology, Addison- 
Wesley Publishing Co., Reading, MA (1995). 

7. R. Boyer and S. Moore, “AFast String SearchingAlgorithm,” 
Communications of the ACM 20, No. 10, 762-772 (October 
1977). 

8. G. H.  Gonnet  and R. Baeza-Yates, Handbook  ofAlgonthms 
and Data Structures in Pascal and C ,  Second Edition, Addison- 
Wesley Publishing Co., Wokingham, UK (1991). 

9. A. Hume and D. M. Sunday, “Fast String Searching,” Soft- 
ware  Practice & Experience 21, No. 11, 1221-1248 (Novem- 
ber 1991). 

10. P. D. Smith, “Experiments with a Very Fast Substring Search 
Algorithm,’’ Software Practice & Experience 21, No. 10,1065- 
1074 (October 1991). 

11. D. M. Sunday, “A Very Fast Substring Search Algorithm,” 
Communications of the ACM 33, No. 8, 132-142 (August 
1990). 

General references 

Apple  Computer, Inc., Guide  toMacintosh Software Localization, 
Addison-Wesley Publishing Co., Menlo  Park, CA (1992). 
Apple  Computer, Inc., Inside Macintosh: Text, Addison-Wesley 
Publishing Co., Menlo  Park, CA (1993). 
Designing NL Enabled Products, SE09-8001, IBM Corporation 
(1987); available through IBM branch offices. 
NLS Reference Manual Release 4, SE09-8002, IBM Corporation 
(1994); available through IBM branch offices. 
The Unicode Consortium, The Unicode Standard, Version 2.0, Ad- 
dison-Wesley Publishing Co., Reading, MA (to be published in 
1996). 

Accepted for publication January 31, 1996. 

Mark E. Davis Taligent, Incorporated, 10355 North  De  Anza 
Boulevard, Cupertino, CA  95014-2233 (electronic mail: mark- 
davis@taligent.com). Dr. Davis is the  director of the  Core  Tech- 
nologies department at Taligent. He received a B.A. degree from 
the University of California at Irvine in 1973 and a  Ph.D.  degree 
from Stanford University in  1979. After  four years at Systime AG 
in Zurich,  where he developed commercial software for multi- 
lingual text and  data manipulation, he joined  Apple  Computer, 
Inc. There he coauthored  the KanjiTalk Japanese Macintosh sys- 
tem  and  the Macintosh Script Manager  and  authored  the  Arabic 
and Hebrew Macintosh systems. He has been with Taligent from 
the time that it was formed. Dr. Davis cofounded the  Unicode 
effort and is the  president of the Unicode Consortium. He had 
a key role in the development of the  Unicode  Standard and  the 
successful resolution of its merger with the ISOiIEC 10646 stan- 
dard,  as well as in its further development. 

242 DAVIS, GRIMES, AND KNOLES IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 



Jack D. Grimes 1CVERIFX  473  Roland  Way,  Oakland, CA 94621 
(electronic  mail: jgimes@icverzfi.com). Dr. Grimes is Vice Pres- 
ident, Engineering at  ICVERIFY, a company that creates  au- 
thorization software for credit  and debit cards. He worked for 
Taligent from early 1992 to early 1996. Before joining Taligent 
he held executive positions with Mass Microsystems, Intel  Cor- 
poration,  and ITT Corporation. Over the past two decades he 
has worked as  both  an electrical and  a software engineer, in en- 
gineering management, in marketing, and in advanced technol- 
ogy. Dr. Grimes  earned his Ph.D.  degree in electrical engineer- 
ing and  computer science and his  M.S. and B.S. degrees in 
electrical engineering from the University of Iowa. His M.S. de- 
gree in experimental psychology was received from the Univer- 
sity of Oregon. His many speaking engagements include tutori- 
als on the psychology  of user interface design, and he has published 
more  than 45 papers  on subjects ranging from visual perception 
to VLSI (very large scale integrated) graphics and object tech- 
nology. 

Deborah J. Knoles Taligent,  Incorporated,  10355 North DeAnza 
Boulevard,  Cupertino, CA 95014-2233  (electronic  mail:  debbie- 
knoles@taligent.com). Ms. Knoles has been  a member of the Tech- 
nical Communications department  at Taligent since shortly after 
its inception in 1992, with responsibility for  documentation  and 
training materials for the  CommonPoint text and  international 
frameworks. She previously spent three years at IBM, support- 
ing system software products. Ms. Knoles holds a B.A. degree in 
English from  Stanford University. 

Reprint Order No. G321-5603. 

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 

1 
DAVIS, GRIMES, AND KNOLES 243 


